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Comparison and Documentation of Techniques of Associative Retrieval'
Xiaochun Li and Shuaib Uddin Arshad
Stanford University

1. Overview of five associative retrieval methods

In this section we identify three types of information to be processed by
associative retrieval methods, then identify five associative retrieval methods. The
advantages, disadvantages and applications of each method will be addressed in
subsequent sections of the report.

1.1 Classification of information in associative computing—three kinds of
information

The information to be processed in associative computing can be divided into three types,
plain text, graphical images and natural images.

(1) Plain text. Examples include scientific and business documentation, information
libraries (employee, product, student...), etc

(2) Graphical image. Examples include maps, handwritten characters, circuit drawings,
etc.

(3) Natural image. Examples include medical diagnostic image, infrared image,
fingerprint, satellite landscape image, etc.

1.2 Comparison of five associative methods

Associative retrieval methods can be divided into five categories as follows: conventional
database, artificial neural network, feature-based digital image associative search,
holographic associative memory and content-addressable processor. These are described
below.

1.2.1 Conventional database

The theory and technology of conventional database has been successfully
developed in the past 30 years and it has become a mature data retrieval technique. Many
commercial products such as Oracle 8, Microsoft SQL Server are available. All
conventional database have some form of strict data structure, and SQL (structured query
language) is used to maintain this structure. For this reason conventional database is also
called relational database. Since the operation of conventional database is based on
software and keywords, it is well applicable to the management of structured textual
information, but it has difficulty handling image information directly. Examples of the
application of conventional database include library information search systems, and
internet-based search engines such as Yahoo, Google, Excite, etc.

1.2.2 Artificial neural network (ANN)
The associative computing principle of ANN is based on 1) the emulation of
biological neural systems and 2) Kolmogorov’s theorem. In Kolmogorov’s theorem it has

! Report prepared under Contract No. F30602-00-1-0522 with Air Force Research Laboratory
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been proved that any continuous multivariate function can be expressed by a finite
number of single variable continuous functions and a set of parameters. This implies that
a finite architecture will be able to imitate the input-output behavior of any complex
system. Because the same set of component functions can be used to construct any
function, the function can be represented just by adjusting a set of variable parameters.
The so-called learning ability of ANN is in fact the process of finding the appropriate set
of parameters. ANN has many advantages in information processing. Patterns of arbitrary
complexity can be learned through general purpose learning algorithms. Once learned,
massive numbers of patterns can be rapidly searched and retrieved. It is also robust and
highly parallel.

Though it has been predicted since its inception that ANN will play an important
role in associative computing, the success of ANN over the past 50 years are primarily
limited to adaptive information classification or filtering and fast approximate
optimization (like the Hopfield model). For an ANN based associative memory, the input
query object has to be statistically dominant, usually more than 60% of the stored
(learned) pattern. As we know, however, for a practical search operation, the input search
key size may be very small, as, for example, finding a small target in cluttered
background.

1.2.3 Feature-based digital image associative search

This technique is in fact the functional extension of conventional database so that
conventional database can process image information. It is based on annotated symbolic
models of image contents, and uses the textual representations in terms of a set of pre-
decided attributes (such as color, shape, size, etc.) and their values. Machine detectable
features such as geometric moments, triangular cover, points of maximum curvature are
often used to help in automating the model extraction process. These symbolic
descriptions are then stored into some form of data structure. Once the data structure 1s
available, various conventional database search techniques are used to search it. As can
be seen, the search operation is performed on the image-feature vectors, not on the image
itself. This retrieval method is also called pseudo-content addressable memory.

Model-based content addressable memory lends itself readily to images of
graphical nature, where the image concept is well designed and extensive domain specific
modeling and human involvement is possible. For natural images, the model extraction
(translation of the “meaning” of an image or its objects into a structured model) itself is a
formidable task, because of the inherent amorphousness of image information. Examples
of the application of this technique include IBM’s QBIC (Query by image content)
database and PACs used in hospitals.

1.2.4 Holographic associative memory

In holographic associative memory (HAM) the association ability is an inherent
property of holographic data storage, arising from the fact that the reference beam used to
record one of a number of holograms may be reconstructed by using a small portion of
the object beam as a search key. The high parallelism of HAM makes it possible to
achieve high data rates for storage and retrieval. Due to the strict Bragg selectivity of
volume holograms, this data retrieval method works best for objects having a fixed
position within a holographic record. Holographic data storage has not found practical




application mainly because of the lack of appropriate recording materials having large
storage capacity, long storage time, low scattering, high dynamic range and high
resolution. However there has been significant progress in the past few years, and new
media and optoelectronic devices are available that may allow commercial development.
HAM is not as flexible as computer-based conventional database, but it may provide a
useful data management tool in a holographic data storage system.

1.2.5 Content-addressable processor

Unlike the associative methods discussed above, content-addressable processors
perform only content comparison or other logic operations on the input data. They do not
store any information. There are two types of content-addressable processor.

1.2.5.1 Totally digital and electronic processor

These processors are in fact single semiconductor chips. They have been used as
address filters or address translators in ATM and Ethernet based systems. NetLogic
Microsystems Inc, Mountain View, CA, for example, is one provider of commercial
products. Using a NetLogic chip for a 16Kx64 routing table in a 12 port Ethernet system,
the address filtering, and source and destination search time can be less than 30ns.
Usually the capacity of this type of content-addressable processor is very small. Detailed
information on NetLogic’s product information <can be found at
http://www netlogicmicro.com/.

1.2.5.2 Optical processor

A good example of an optical content-addressable processor is the one recently
proposed by A. Louri et al at ECE Dept, the University of Arizona, which is called
multiwavelength optical content-addressable parallel processor (MW-OCAPP). The MW-
OCAPP is designed to provide efficient parallel data retrieval and processing by means of
moving the bulk of database operations from electronics to optics. Polarization and
wavelength-encoding have been proposed to enhance processing parallelism. 11
relational database primitive operations can be realized in MW-OCAPP. The main
problems of these optical processors seem to be the difficulty in manufacturing high
speed SLMs, the low data transfer rate from computer to SLM, the computation
inaccuracy, and bulk system size.

2. Conventional database!””!

The theory and technology of conventional database has been successfully developed
in the past 30 years, and it has become a mature data retrieval technique. Many
commercial products such as Oracle 8i, Microsoft SQL Server and Informix Dynamic
Server2000 are available in market.

A database has a well defined structure. Not only does it contain the data of interest, it
also contains metadata that describes the structure of the data within a database. Because
the database contains a description of its own structure, it is said to be self-describing.
Relational databases have become popular in the past 30 years because of their flexible
structure. Relational databases are dynamic and size scalable. When the structure of a
relational database is changed, the application program code does not need any
modification. In addition to the updatable structure, the source data can also be




dynamically updated and deleted. The industry standard computer language to maintain
relational database structure is SQL (Structured Query Language). The syntax of SQL is
much like standard English, and easily understood. The operation of conventional
database is through software manipulation, and can be based on arbitrarily logical and
arithmetic combinations. A conventional database is constructed on and operated through
either a client/server system or a web-based system. As shown in Fig.2.1 and Fig.2.2,
included in the systems are a large capacity data storage device (for source data), high
performance computer (for server), application program (DBMS, browser, client and
server extensions) and communication channel. All this hardware and software are
becoming increasingly mature and thus cheaper.

Database
Client

Local Area
Network

Database SData
Server ource

Fig.2.1 Database in a Client/Server system

Web Client Extension
Browser Program

Web Server Extension Database Data
Internet S Program g Source
Intranet erver gr erver

Fig.2.2 Database in a web-based system

2.1 References for Conventional database
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2. Kevin Loney, Marlene Theriault, “Oracle 8 DBA handbook,” Osborne/McGraw-
Hill, 2000, San Francisco.

3. George Koch, Kevin Loney, “Oracle 8, the complete reference,” Osborne, McGraw-
Hill, 1997, San Francisco.




3. Neural networks for nonlinear pattern recognition
3.1 Nonlinear pattern recognition

Fig.3.1 illustrates the process of pattern recognition in a two-feature space; the
feature distribution of three objects, A, B and C are shown. In Fig.3.1(a) classes A, B and
C are linearly separable. Two linear decision hyperplanes, D1 and D2, can classify A, B
and C very well with 100% accuracy. However, in Fig.3.1(b), the feature distribution of
A, B and C are meshed, posing a problem for linear decision hyperplanes. The shaded
areas show the decision error resulting from the nonlinear boundary condition of the
feature space.

m A D1

"
F1 F1
() (b)
Fig.3.1 Object A, B and C in a two-feature space. (a) A, B and C are linearly
separable by two hyperplanes, DI and D2. (b) A, B and C are not linearly
separable.

In the past, much research and development effort has attempted to make a
computer perform pattern recognition M Many successful examples have been shown in
the field of machine vision for production inspection and automation in a controlled
environment. Well-defined linear algorithms have been developed to extract features
from images and classify objects in real time with a computer. Specially designed
electronic processors have been developed to speed up the recognition process. However,
many practical problems, such as the processing of the 3D vision of an arbitrarily
oriented object in a noisy, uncontrolled environment, are still very difficulty for a
computer to perform. These problems require nonlinear feature extraction and
classification in a complex nonlinear feature space, and also demand the ability to adapt
to a changing environment.

3.2 Artificial neural network, learning and parallel processing
Artificial neural network (NN) technology has been developed in the last two
decades to attack these nonlinear pattern recognition problems. Artificial NN’s are

modeled after biological NN’s, mimicking some of the recognition and deductive
functions of the human brain>*!. One of the most intriguing characteristics of an artificial
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NN is its ability to modify dynamically its interconnection weights so that a predefined
system behavior could be achieved 141 This interconnection weight modification process
is termed as the learning of a neural network. Another very important property of an
artificial NN is its parallel processing capability. After learning, a neural network can
compare the input data against all stored patterns simultaneously, thus having very high
processing speed. This is totally different from the serial read-and-compare processing of
a computer-based pattern recognition.

Recently, specialized electronic NN processors and VLSI chips have been
introduced into the commercial market ', The number of parallel processing channels
they can handle is limited because of the limited interconnection capability of electronic
wires within an IC chip. For high-resolution object recognition, a large number of
neurons will be required in order to achieve high parallelism processing.

Because of its inherent parallel processing ability, optical processors are
particularly useful in feature extraction and information reduction at the preprocessing
layer of a neural network where massive interconnection is usually required.

3.3 Neural networks for nonlinear processing

Input X

Input )
Layer whox
“ln_i. \V\\"‘.}‘ Y‘U o™ W-’!}x;h
Hidden # A i ’
Layer XF = FY'™ |
wu‘?‘y Y:;’v - Wﬁ'.ﬁx::;
Output "
Lx’i_\’cr r r Y‘ ™ F‘Yg‘ {

Qutput ¥

Fig.3.2 Operational flow of a multi-layer neural network. It consists of a series
of matrix-vector multiplication and nonlinear thresholding.

As shown in Fig.3.2, a neural network consists of multiple layers of processors
(neurons) that are interconnected. Input data enter the system at the input neuron layer.
Each neuron performs weighted summation operation on all its inputs, compare the result
with a predefined threshold, and then generates an output by using a nonlinear function,
as shown below

Yi =f{zwijxj—0iJ (3.1)

where x; (=1,2...N) is the signal from the j”' neuron, wj; is the weight associated with
neuron / and j, €, is a bias value, and f'is a nonlinear function, which can be a hard limit, a
threshold logic, or a sigmoid function.

A multi-layer feed-forward NN can be represented as follows:




= J{z w4 - 9,} (3.2)
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where y,*' is the " neuron output in the K" layer, f[] is the nonlinear transfer function of
each neuron, w is the interconnection weight between v and y*", and @ is the bias
constant in each neuron. In the vector form, Eq.(3.2) can be expressed as

Y® =wWX*" -9 (3.3a2)
X® - le(k)J (3.3b)

The learning process of a NN refers to the modification of its interconnection
weight matrix W based on the optimization of a predefined object function. The object
function, for example, could be the difference between the practical output (which can be
calculated from Eq.(3.3)) and the desired value. The interconnection matrix W is
optimized in such a way that makes the object function (the difference) reach its
minimum. Many different learning algorithms have been proposed and tested ] One of
the most famous and very efficient algorithms is the BP (backward propagation)
algorithm.

From Eq.(3.3) we can see that a single layer NN is a general matrix-vector
product that can be trained to represent most linear transformations such as the Fourier
transform, correlation, linear filtering, principal component analysis, and partial least-
square analysis M2 However, a multi-layer neural network performs linear
transformations within a single layer and nonlinear transfer functions between layers, as
shown in Fig.3.2. Thus a multi-layer NN is a nonlinear processor that can be used to
approximate any continuous nonlinear function with arbitrary desired accuracy. Hornik et
al proved that a network with only one hidden layer of sigmoid neurons is enough to have
universal approximation properties 131 One principal advantage of a multi-layer NN
stems from the universal NN architecture that enables the network system to adapt to
different environments through training by examples.

Fig.3.3 compares the classification capability of a linear classifier, a two-layer
NN, and a three-layer nonlinear NN B3] Neither a single layer NN nor a linear classifier
can separate tow classes that have mashed features. In Fig.3.3 regions A and B represent
the feature distribution of class A and B, respectively. The thin lines are the boundaries of
the decision plane. As we can see, by proper training, the two- and three-layer NN’s can
cut through the mashed areas of two classes and form a nonlinear boundary to separate
the two classes. The misclassification error rate can be reduced further by multi-layer
NN, since the decision plane would be more adaptive.

A neural network can learn from the training examples to associate features of
input patterns with an optimal (desired) output result. The adaptive learning, massive
interconnection, and nonlinear classification capabilities of NN’s make them generally
more robust to noise and distortion.
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Fig.3.3 Comparison of a linear classifier, a two-layer NN and a three-layer NN.
The thin lines represent the decision plane boundary.

3.4 Holographic optical neural network system
3.4.1 Massive interconnection requirement

The operation of a one-layer 2 dimensional NN can be expressed in the following
matrix-vector product form:

Yy = f{ZZ(Ty ) ‘xilz:l =12, .M (3.4)

I=1 k=1

where y; and xj are the states of the y’”’ output neuron and the JK" input neuron,
respectively, (7j)u 1s the set of interconnection weights between these pairs of neurons, f
is the nonlinear threshold function, and NxN and MxM are the number of input and
output neurons in the network, respectively.

Suppose AM=N. Then from Eq.(3.4) we see that, an NxN neural network has N
interconnections. For a 512x512 NN, (512)* or 7x10" interconnections must be
implemented. It is far beyond state-of-the-art VLSI technology to fabricate a chip or a
board of so many interconnections to perform parallel pattern recognition.

Optical technologies, by virtual of their inherent 3D global interconnection
capability, are good candidates for implementing this massive interconnection and
parallel processing in the first laPrer of a multi-layer NN. Photorefractive crystals have the
potential of dynamic learning "%, Passive holographic materials, such as dichromated
gelatin, silver halide, Dupont and Polaroid photopolymers, are well developed. They
possess the properties of high resolution (>5000 line pair/mm), high refractive index




change, large recording area and low cost. These holographic materials offer an ideal
means of a massively parallel 3D interconnection for a large scale NN implementations
[13.168] The interconnections in the first layer may be fixed as a static associative memory
by use of holographic implementations. The subsequent layers are much smaller than the
first layer, and then can be implemented by an electronic NN for adaptive training and
nonlinear recognition.

3.42 Implementation of a holographic optical neural network

In this section we show an example implementation [16-20] of a holographic optical
neural network with high-density interconnection capacity, developed by Physical Optics
Corp., Torrance, CA. Fig.3.4 shows the schematic diagram of the setup for recording an
N* interconnection weight matrix.

In the setup shown in Fig.3.4, a collimated beam illuminates an SLM at one
particular incidence angle (near normal, for example). A diffuser, placed in the image
plane of a 4f imaging optical system, spreads the incident pattern (modulated by the
SLM) over a wide angular range. The 4f imaging system faithfully images the SLM pixel
array onto the diffuser. A hologram plate with a mask is placed at a proper distance Z
(which depends on the desired recording size and the spread angle of the diffuser) behind
the diffuser. With an additional reference beam, the pattern from the SLM (7}) will be
holographically recorded in an element of the array. By changing the SLM pattern and
moving the mask along both horizontal and vertical directions, one can fabricate an N
interconnection weight matrix [ie (7;)x]. The weight information can be coded by
varying the ON time of each SLM pixels. Thus, the longer the two-beam exposure, the
stronger the grating strength and the higher the diffraction efficiency. The key element in
the recording process is the design of the diffuser, because its characteristics, such as
speckle size, directionality, and uniformity are crucial to the performance of the N
holographic element array.

In the reconstruction process (see the bottom half of Fig3.4), an encoded
reference beam (with pixel ay), which is conjugated to the reference beam in the
recording process and represents the input information, illuminates the holographic array.
This second reference beam can be realized by an SLM or can originate from an array of
laser diodes with collimating lenses. A photo-detector array that has the same packing
density and pixel size as the SLM used in the recording process is placed at the diffuser
position. The beams diffracted from the holographic matrix elements are directed to the
photo-detector array exactly.
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Fig. 3.4 Recording and reconstruction of a large scaie holographic optical neural
network.

Because the holographic array consists of many matrix elements, the outputs of
these holographic elements add up pixel by pixel in the photo-detector array. Thus the
resulting signals detected by one of the detectors can be described as

b{j = Z(Tg July (3.5)

xl

This equation describes the parallel interconnections of an NxN input array to an NxN
output array through an N* holographic interconnection weight matrix T.




3.4.3 Pattern recognition

Many successful pattern recognition operations based on the holographic optical
neural network described above have been demonstrated U'62%. The complete system is of
course an optical-electronic hybrid implementation. Input images are first electronically
preprocessed, including smoothing, normalization and edge enhancement. The
preprocessed signals are then sent to the optical NN for training and object identification.
The input neurons are grouped to represent the feature windows from the preprocessing
stage. A set of examples is used to train the NN to produce the correct responses from the
output neurons such that only one output neuron responds high and the rest low for
certain images. The computation time for training the system is less than 15 seconds. The
examined patterns include pictures of military vehicles like planes, tanks and helicopters.
Based on real-time pattern recognition, an automatic tracking system has also been
developed 08,

3.5 Comments

Due to its inherent 3D global interconnection and parallel processing capabilities,
optical technology has great potential for the implementation of large-scale neural
networks for nonlinear pattern recognition. So far the main difficulty in building an
optical information processing system is the lack of proper optical-electronic (OE) and
electronic-optical (EO) devices, and optical recording materials. The desired OE and EO
(such as CCD and SLM) must have high speed, high sensitivity, and high resolution. The
desired optical materials should be of large dynamic range, high resolution, high response
speed and/or long lifetime. Also, much attention should be paid to the design of the
interface between an optical information processing system and its associated electronic
unit. The interface must be of high enough speed so that the high-speed advantage of the
optical implementation can be fully leveraged.

3.6 References for neural networks for nonlinear pattern recognition
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4. Digital image associative search

4.1 Retrieval of image information

Rapid advancement in digital storage and processing technology has created a
significant impact on the way information is stored and utilized. Early computers were
only capable of storing and processing text based information, but the rapid development
of digital technology and high-speed networks, and the proliferation of the World Wide
Web has significantly changed this situation. Now, a large portion of the information
used daily by individuals and organizations consists of images. Presently images are
being generated at an ever-increasing rate by sources such as defense and civilian
satellites, scientific experiments, space telescopes, medical imaging and home
entertainment systems. These sources are so diverse and large in number that it is
difficult to enumerate all of them. Context-based image retrieval provides a tool for
efficient retrieval of images from large image repositories.

4,2 Content based image retrieval

Content Based Image Retrieval or CBIR is a broad term, which can be defined as
“using a complete or a partial image to index through a database of images to compare
certain features and retrieve one or more images, which have minimum distance from the
query image”.

The importance of CBIR can be realized from the fact that images are being
generated at an ever-increasing rate by sources such as defense and civilian satellites,
military reconnaissance and surveillance flights, fingerprinting, scientific experiments,
biomedical imaging, and home entertainment systems. For example, the Hubble space
telescope daily generates terabytes of image data. A CBIR system is required to use
information from these image repositories effectively and efficiently, allowing users to
retrieve relevant images based on image contents. Application areas in which CBIR is a
principal activity are numerous and diverse [3]:

Art galleries and museum management,
Architectural and engineering design,

Interior design,

Remote sensing and management of earth resources,
Geographic information systems,

Scientific database management,

Weather forecasting,

Retailing,

Fabric and fashion design,

Trademark and copyright database management,
Law enforcement and criminal investigation,
Picture archiving and communication systems, and
Document storage and processing
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4.3 Approaches

With the advancement in the digital data processing technology, CBIR has taken a
different direction lately. Previously, image contents were modeled as a set of attributes
extracted manually and managed within the framework of conventional database-
management systems. Queries were specified using these attributes. Attribute-based
representation of images requires a high level of image abstraction. Generally, the higher
the level of abstraction, the lesser is the scope for posing ad hoc queries to the image
database.  Attribute-based retrieval has been advocated and advanced primarily by
database researchers.

Lately the new direction by CBIR depends on an integrated feature-
extraction/object recognition subsystem to overcome the limitation of attribute based
retrieval. This subsystem automates the feature-extraction and object-recognition task
that occurs when the image is inserted into the database. Though these approaches are
computationally expensive as compared to attribute-based approaches, fast digital
processing technology has made these approaches possible.

CBIR research draws upon ideas from areas such as knowledge-based systems,
cognitive science, user modeling, computer graphics, image processing, pattern
recognition, database management systems and information retrieval. This confluence of
ideas has culminated in the introduction of novel image representations and data models,
efficient and robust query-processing algorithms, intelligent query interfaces, and
domain-independent system architectures.

4.4 Query classes

Generic query classes facilitate CBIR through retrieving by:
e Color,
Texture,
Sketch,
Shape,
Volume,
Spatial constraints,
Browsing,
Objective attributes,
Subjective attributes,
Motion,
Text, and
Domain concepts

e o 6 © ¢ & o © & o

A CBIR system featuring all these query classes would have reasonable generality
for dealing with diverse applications.

Color and texture queries let users select images containing objects specified
accordingly. Retrieval by sketch lets users outline an image and then retrieves a like
image from the database. This class can be thought of as retrieving images by matching
the dominant edges. The shapes class of queries has a counterpart in 3D images referred

to as Retrieval by volume. The spatial constraints category deals with a class of queries
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based on spatial and topological relationships among the objects in an image. These
relationships may span a broad spectrum ranging from directional relationships to
adjacency, overlap, and containment involving pair of objects or multiple objects.

Retrieval by browsing is performed when users are vague about their retrieval
needs or are unfamiliar with the structure and types of information available in the image
database. The objective attributes query uses attributes like the date of image acquisition
or the number of bedrooms in a residential floor-plan image, and is similar to Structured
Query Language retrieval in conventional databases. Retrieval is based on exact match
of attribute values. In contrast, a subjective attributes query is characterized by the
presence of attributes that may be interpreted differently by each user. For example, in
mug-shot database, the attribute eyebrow shape assumes one of three values: arched,
normal or straight. One user may assign the normal value for the eyebrow shape, while
another may interpret the value as arched.

Retrieval by motion facilitates retrieving spatiotemporal image sequences
depicting a domain phenomenon that varies in time or geographic space. Some
applications require retrieving images based on associated text. Such a need is modeled
by retrieving by text. Note that processing this query involves natural language
processing and information retrieval techniques.

The above mentioned query classes can be used as fundamental operators in
formulating a class of complex queries referred to as Retrieval by Domain Concepts. An
example of this is “Retrieve images of snow-covered mountains”.

Not all the above generic query classes are necessary, however, for a given image
retrieval application. For example, a real estate marketing application may require only
retrieval by browsing, objective attributes, shape, and spatial constraints. In such a case,
the a priori feature-extraction approach helps generate an application-specific system
from a generic one by retaining only the necessary classes.

4.5 Using color to retrieve image

Taking color as an instance of the query classes, we will in this section explain
how an image is retrieved from an image database, using a technique based on color [2].
Though there are a number of techniques utilized in this context, one important approach
is the use of Color histograms. Color histograms themselves have certain limitations and
so they are not usually utilized as stand-alone image retrieval techniques; rather they are
typically utilized as an integral part of a more sophisticated technique. A number of
major CBIR systems, which are available online over the World Wide Web, utilize this
technique (See Section 4.14).

4,6 Color histogram

Color histograms provide us a very general picture of the colors in an image.
They provide us with a vector showing the color content of the image at a coarse level.

Consider an image having certain number of pixels say M pixels. For simplicity
it is assumed that all the images both in the database and the query image have the same
number of pixels. If we consider 24-bit image then the image possibly contains 16
million colors. This makes the computation fairly complex. Instead, the color space is
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discretized into a small number n colors so that the vector is manageable. This is done by
taking few most significant bits of each primary color of each pixel. For example,
consider a pixel representation:

Red Green Blue
N/
010001110101001110101010
AN S N’

Taking only the first 2 bits of each primary color gives us a total of 6 bits. Using
these 6 bits a total of 2° = 64 colors can be represented. These colors are called buckets.
For each pixel, the bucket is computed into which the pixel falls. In this way the total
number of pixels falling into each bucket are counted. Accumulating these counts into a
vector give us the color histogram. It can be represented as:

HI =< h], hz, h3, ceians hn>

Where Hj is the color histogram thus obtained, and hy, hy, hs, ....., h, are the number of
pixels falling into each bucket.

Usually the color histogram of each image is calculated when the image is being
inserted into the database. The histogram is stored along with the image in the database
so that it can be retrieved and processed easily whenever required.

Any image query is processed by computing the distances between the query
image and different images in the database, and then picking up one or a few images
having the minimum distance. Typically color histograms are compared using the sum of
squared differences (L,-distance) or the sum of absolute value of differences (Li-
distance). So, the most similar image I would be the image I' minimizing

Il H; -1y | =% iG] - BGD,
for the L2-distance , or

| 5y -1y | =X 1 H(j] - B
for the L1-distance. Note that it is assumed that differences are weighted evenly across
different buckets for simplicity.

4.7 Advantages of color histograms
Color histograms bear certain advantages over conventional techniques:
- They are computationally trivial.
- Small change in the camera viewpoint tend not to effect color histograms, and
- Different objects often have distinctive color histograms.

4.8 Limitations of color histograms

In addition to the above mentioned advantages, the color histograms have certain
limitations:
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- They do not take into account any spatial information present in the image and
they only quantify the colors present. [f two different images have similar color
content, they will be regarded as similar if this technique is used.

- Color histograms are sensitive to compression artifacts and changes to overall
image brightness.

4.9 Color coherence vectors (CCV)

The above-mentioned limitations of color histograms have been addressed by
another technique called Color Coherence Vectors. This technique is an enhancement of
the color histograms as explained below.

Color coherence is defined as the degree to which pixels of a given color are
members of large similarly colored regions. These significant regions can be regarded as
coherent regions, and are of significant importance in characterizing images.

The coherence measure classifies the pixels as either coherent or incoherent.
Coherent pixels are a part of some sizable contiguous region, while incoherent pixels are
not. A color coherence vector (CCV) represents this classification for each color in the
image. CCV’s prevent coherent pixels in one image from matching incoherent pixels in
another. This allows fine distinction that cannot be made with color histograms.

4.10 CCV computation

The initial stage of CCV computation is similar to the computation of a color
histogram. In the first step, the image is slightly blurred by replacing pixel values with
the average value in a small local neighborhood (including the 8 adjacent pixels). This
eliminates small variations between neighboring pixels. The color space is then,
discretized such that there are only n distinct colors in the image.

The next step is to classify the pixels within a given color bucket as either
coherent or incoherent. A coherent pixel is part of a large group of pixels of the same
color, while incoherent pixel is not. Pixel groups are determined by connected
components. A connected component C is a maximal set of pixels such that for any two
pixels p, p’ € C, there is a path in C between p and p’. (Formally, a path in C is a
sequence of pixels p = p1, P2, ....., Pa = P’ such that each pixel p; is in C and any two
sequential pixels p;, pi+1 are adjacent to each other. Any two pixels are adjacent if one
pixel is among the eight closest neighbors of the other; in other words, diagonal
neighbors are included.) Note that the connected components are computed within a
given discretized color bucket. This effectively segments the image based on the
discretized colorspace.

Connected components can be computed in linear time. When this is done, each
pixel belongs to exactly one connected component. The pixels are, then, classified as
either coherent or incoherent depending on the size in pixels of its connected
components. A pixel is coherent if the size of its connected components exceeds a fixed
value t; otherwise, the pixel is incoherent.

For a given discretized color, some of the pixels with that color will be coherent
and some will be incoherent. Let us call the number of coherent pixels of the j’th




discretized color o and the number of incoherent pixels ;. Clearly the total number of
pixels with that color is o; + B, and so a color histogram would summarize the image as

<o+ By, , Oy + B>
Instead, for each color the pair is computed
(a5, Bi)

which is called the coherence pair fir the j’th color. The color coherence vector for the
image consists of

<(a‘1 > Bl)a s (a’l\ 2 '3n)>

This forms a vector of coherence pair one for each discretized color.
Usually 7 is determined to be a certain percentage of the image. For example, in an
image containing 38,976 pixels, a t of 300 pixels would be less than 1% of the total
number of pixels in the image.

4.11 Comparing CCV’s

Consider to images I and I', together with their CCV’s Gy and Gy, and let the
number of coherent pixels in color bucket j be o (for I) and o' (for I'). Similarly let the
number incoherent pixels be B; and B;'. So

Gy = <o, B1), -y (O, Bo)>

Gy =<(ou', Bi) - (o', Bu')>
Color histograms will compute the difference between I and I as

Au=X | (o5 + By) — (o' + By
This equation can be rearranged to get the following:

A =X (05~ a)l +1(B;- By

These two equations show that CCV’s create a finer distinction than color
histograms. A given color bucket j can contain the same number of pixels inasin ', ie.

o + B = o5 + By
but these pixels may be entirely coherent in I and entirely incoherent in I. In this case, B;
= oy’ =0, and while Ay =0, A will be large.

In general Ay < Ag, This is true even if we used squared differences instead of absolute
differences in the definitions of Agand Ag.

4.12 Computational efficiency

There are two phases to the computation involved in querying an image database.
First, when an image is inserted into the database, a CCV must be computed. Second,
when the database is queried, some number of the most similar images must be retrieved.
Most methods for content-based indexing include these distinct phases. For both color
histograms and CCV’s, these phases are implemented in linear time.

According to a the experimental results given in [2], on a SOMHz SPARCstation
20, color histograms can be computed at 67 images per second, while CCV’s can be
computed at 5 images per second. Using color histograms, 21,940 comparisons can be
performed per second, while with CCV’s 7,746 can be performed per second. The
images used for the benchmarking were 232 X 168.
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4.14 Web Sites for Content-Based Image Retrieval

[1} http://rvi2.ecn.purdue edu/~cbirdev/WWW/CBIR main html
Content-Based Image Retrieval for Medical Image Databases

[2] http://www research.ibm.com/networked data_systems/Qauc/whitepaper/paper.html
Scalable Content-Based Retrieval from Distributed Image/Video Databases

[3] http://maya.ece.ucsb.edu/Netra/
NETRA: A Content-Based Image Retrieval System

[4] http:/iwww.cs.umd edu/~fatma/abstract html
Comparison of Content Based Image Retrieval Systems

[5] http://www-db.stanford.edu/~wangz/project/imsearch/
Content-based Image Retrieval Project

[6] http.//www jtap.ac.uk/projects/jtap-564.html
Report on Content-based Image Retrieval

Dr John Eakins, Institute for Image Data Research
University of Northumbria at Newcastle, Ellison Place, Newcastle upon Tyne NE1
8ST

{7] http://www.research. microsoft.com/mlp/Pages/proj_retrieve.htm
Content-based Image Retrieval—research at Microsoft

[8] http://elib.cs.berkeley edu/seminar/1999/19991029 html
SPIRE: A Progressive Content-Based SPatial Image Retrieval Engine

[9] http://www.unn.ac uk/iidr/research/cbir/report.html
Content-based Image Retrieval. A report to the JISC Technology Applications
Programme
John P Eakins and Margaret E Graham
Institute for Image Data Research, University of Northumbria at Newcastle, January
1999

[10] http://www-rocq.inria.fi/imedia/index_UK.html
The IMEDIA Project. Image and multimedia indexing, browsing and retrieval
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[ 11] http://www.cs. washington.edu/research/imagedatabase/
University of Washington. Efficient Content-Based Image Retrieval

[12] http://elib.cs.berkeley.edu/vision.html
Computer Vision Research. UC Berkeley Computer Vision Group.

[13] http://www.cis hut fi/picsom/publications. html
Demonstration of PicSOM system for content-based image retrieval

[14] http://maya.ctr.columbia.edu:8080/
IBM-NASA Satellite Image Explorer

[15] http://cui.unige ch/~muellerh/contentBasedImageRetrieval. html
Content based Image Retrieval

[16] http://www.dlib.org/dlib/february97/columbia/02chang. html
Finding Images/Video in Large Archives. Columbia's Content-Based Visual Query
Project

[ 177 http.//www.cs.bris.ac.uk/Tools/Reports/Abstracts/1998-waod.html
Iterative Refinement by Relevance Feedback in Content-Based Digi tal Image
Retrieval

[18] http:/meru.cecs. missouri.edu/mm_seminar/cont_ret.html
Content-Based Image Retrieval by Using Color and Texture Information

[19] http://www.ctr.columbia.edu/~jrsmith/html/pubs/TNT/color_tech_1.htmi
Tools and Techniques for Color Image Retrieval
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Computer Vision Group

Department of Computer Science
University of Geneva, Switzerland

[21] http://www.ctr.columbia.edu/Visual SEEk/

VisualSEEk is a Web tool for searching for images and videos. VisualSEEk allows the
user to make queries using visual features. The demo system currently supplies 3,200
(and now also 12,000) color images and videos. Queries may be conducted by
sketching the layout of color regions, by providing the URL of a seed image or by
using instances of prior matches. Image and ATV Lab of Columbia University.

[22] http://www attrasoft.com/imagefinder42/imageretrieval. html

Image retrieval, classification, software, etc. at Attrasoft.
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[23] http://www brunel.ac.uk/depts/ee/Research_Programme/NN/res-colcbir html
Colour Content-Based Image Retrieval

[24] http//www ee umd.edu/medlab/papers/draft 1 c/draft 1c html
Heuristic Similarity Measure Characterization for Content-Based Image Retrieval
Wilbur S. Peng - Nicholas DeClaris
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[25] http://vivaldi.ece.ucsb.edu/projects/ipinadl/ipad!.html
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for the US Department of Energy.
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Content-based Texture Image Retrieval with Relevance Feedback. Personal website.

[31] http://unicorn.comp.nus.edu.sg/~mmir/
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Department of Electronic and Electrical Engineering
Brunel University
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BlobSketch: A Web Interface for Content-based Image Retrieval

Kimberly G. Waters, University of Maryland, Baltimore County
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John Eakins and Margaret Graham, University of Northumbria at Newcastle
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Department of Electrical Engineering & New Media Technology Center, Columbia
University
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Computer aided search system.

{41] http://www lic.gov.uk/awards/ir-curpj.htmi
This list includes details of current projects supported by the Library and Information
Commission through its Information Retrieval research programme.
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5. Volume holographic associative memory and other optical correlators
5.1 Volume holographic associative memory

This approach has been investigated intensively in the past few years because of
renewed interest in the commercialization of holographic data storage. For detailed
information on volume holographic associative memory, please refer to “Xiaochun Li,
Fedor Dimov, William Phillips, “Low-cost optical search of digital holographic storage
systems”, Final report to Air Force Rome Laboratories. Contract No. F30602-97-C-0343.
Nov, 2000.”

5.2 References for volume holographic associative memory

The following papers have more detailed information on volume holographic
associative memory:

1. Xiaochun Li, Fedor Dimov, William Phillips, “Low-cost optical search of digital
holographic storage systems”, Final report to Air Force Rome Laboratories. Contract
No. F30602-97-C-0343. Oct., 2000.

2. Xiaochun Li, Fedor Dimov, William Phillips, Lambertus Hesselink, Robert McLeod,
“Parallel associative search by use of a volume holographic memory,” Applied
Imagery Pattern Recognition (AIPR) 2000, Washington DC, Oct.16-18, 2000.

3. Geoffrey W. Burr, Sebastian Kobras, Holger Hanssen, Hans Coufal, “Content-
addressable data storage by use of volume holograms,” App. Opt., Vol.38, No.32,
pp.6779-6784, 1999.

4. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M.
Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox,
“Holographic data storage,” IBM Journal of Research & development, Vol .44, No.3,
1999. (Download from http://www.research.ibm.com/journal/rd/443/ashley.html).

5. Pericles A. Mitkas, George A. Betzos, Sakellaris Mailis, Nikos A. Vainos,
“Characterization of associative recall in a volume holographic database system for
multimedia applications,” SPIE, Vol.3388, pp.198-208, April 1998.

6. Jian Fu, Marius P. Schamschula, H. John Caulfield, “Optical parallel database
management system for page oriented holographic memories,” Optics Express, Vol.5,
No.12, pp.273-285, Dec. 1999.

5.3 Other optical correlators

Basically optical correlators can be divided into 2 classes: coherent and
incoherent correlators. In most cases optical correlators calculate the correlation (inner
product) between two images as their similarity measure.

The best-known optical correlator is the VanderLugt planar holographic
correlator'™!. The recorded hologram serves as the matched filter. The resulting signal-
to-noise ratio (SNR) is usually high. The main problems of the VanderLugt correlator
include the off-line filter recording and the need for a separate filter for each specific
image pattern. Joint transform correlator (JT C)*¥ overcomes the problem of off-line
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recording of a VanderLugt correlator by jointly transforming the input patterns and
recording the resultant hologram. However, due to the involvement of nonlinear
response, the SNR resulting from a JTC is usually smaller than that of a VanderLugt
correlator'”. Angle-multiplexed volume holographic correlator!'® ' can search into
multiple images simultaneously which are recorded in one common Jocation, thus having
very high processing speed. Volume holographic correlator is further characterized by its
limited shift invariance when comparing with its planar holographic counterpart. This
limitation is especially rigorous in the Bragg selective direction of volume holograms.
This system lends itself best to search of relational databases, where information can have
a fixed position on the stored record. The multistage holographic optical random access
memory (HORAM), proposed by Liu et all'> ™! recently, makes use of binary and/or
holographic optical devices to create multiple replicas of the input image spectrum
patterns. These replicas readout multiple recorded holograms simultaneously, thus
increasing the degree of parallelism. Now the main problem related to HORAM comes
from the limited performance of the binary/holographic beam splitters. Diffraction
efficiency and uniformity are the main concerns.

The basic incoherent optical correlator is the shadow-casting correlator
has very large 2D shift invariance. The system is compact and low cost. Diffraction
arising from the high frequency component of input images will reduce the signal-to-
noise ratio. To maintain reasonable SNR, the distance between the two input images
should be limited, which in turn limits the achievable shift invariance amount. Using both
positive and negative cycling-encoding!'*!, the shadow-casting correlator can also
calculate the absolute difference between two input images as their similarity measure.
The sacrifice of the cycling-encoding is its low efficiency: multiple pixels will be used to
represent one gray scale level.

Obviously, incoherent correlators are immune to coherent noise. However, it is
difficult for incoherent correlators to achieve Fourier transform and subtract operation.
Furthermore, some electro-optical device such as high speed FLC SLM works only with
polarized coherent beam. Such a device requirement may limit the implementation of
incoherent optical correlators.

It is interesting to note that in most optical information processing system the
source data to be processed usually comes from a computer. A spatial light modulator
(SLM) is then used to convert the data from the electronic to the optical domain. The
bottleneck of the processing speed of such an optical system comes from the low data
transfer rate from computer memory to SLM and/or the low frame rate of the SLM.

Due to the spectrum response limitation of holographic recording materials,
volume holographic correlators usually require coherent beams with a wavelength in the
blue-green range. So far lasers operating in this spectrum range and having long coherent
length for the implementation of holography are relatively expensive and bulky.

14, 15] It
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6. Content-addressable processor

Conventional database and volume holographic correlator not only can do
associative search, they also store all source data. Different from these two bi-functional
systems, content-addressable processor performs only content comparison or other logic
operation (such magnitude-comparison as great tan or less than) on the input data. It does
not store any information. The data to be processed comes from either a control computer
or a secondary storage device. That is why we give it the name “processor”. By the way,
the joint transform correlator and shadow-casting incoherent optical correlator mentioned
above do not have any storage capability either. Here we present two types of content-
addressable processor.

6.1 Totally digital and electronic processor“]

This kind of processor is in fact an integrated semiconductor chip. It has been
used as address filters or address translators in ATM and Ethernet based systems.
Advanced processors developed in recent years have the parallel search ability. This
means the comparison between the input data and all stored address data can be
completed in one cycle. NetLogic Microsystems Inc, Mountain View, CA, for example,
is providing such kind of commercial products. Using NetLogic’s chip, for a 16Kx64
routing table for a 12 port Ethernet system, the address filtering and source and
destination search time could be less than 30ns. Because of the circuit complexity and
limited storage density of this kind of content-addressable processor, usually the capacity
is very small. Detailed information on NetLogic’s product information can be found at

http.//www.netlogicmicro.cony/.

6.2 Optical processor[M]

A good example of an optical content-addressable processor is the one recently
proposed by A. Louri et al at ECE Dept, the University of Arizona, which is called
multiwavelength optical content-addressable parallel processor (MW-OCAPP). The MW-
OCAPP is designed to provide efficient parallel data retrieval and processing by means of
moving the bulk of database operations from electronics to optics. Polarization and
wavelength-encoding have been proposed to enhance processing parallelism. 11
relational database primitive operations can be realized in MW-OCAPP. The problems
faced by this kind of optical processor are 1. the difficulty in manufacturing high speed
SLMs, 2. the low data transfer rate from computer to SLM, 3. the computation inaccuracy
and 4. bulk system size.
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